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Abstract: 

The drag-based Twisted Savonius Vertical Axis Wind Turbine (VAWT) has shown 

promising applications for use on the tops of buildings, enabling clean energy production at the 

site of its use, virtually eliminating transportation losses. Unfortunately, the turbine‘s shape is 

very complex and three-dimensional because of its twist, requiring complex machinery to 

construct. I was able to model the geometry of the shape with the symbolic geometry program 

Geometry Expressions, developing visual models that depict the appearance of the turbine in 

operation and show the effects of twisting the blade. Ellipses, loci and traces comprised the 

visual model. The most significant finding was that the radius of the turbine is squeezed as the 

turbine is twisted, which occurs because of the geometric principles of the blade, not just the 

limitations of the materials. A greater angle of twist results in a greater potential efficiency in 

operation. Utilizing the calculus principles of definite integrals allowed creation of an 

approximation of the shape, ―unrolled‖ into a flat surface using triangles. This can be used to 

build the turbine much more simply and, with refinement, could allow widespread use of 

Twisted Savonius turbines on rooftops with little cost relative to other alternative energy options. 
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Introduction 

According to the Energy Information Association, the average price of electricity for 

commercial consumers increased from 7.26 to 10.28 cents per kilowatt-hour from 1999 to 2008, 

rising 42% (Energy Information Association, 2009). Government policies also provide monetary 

incentives for generating clean energy. For the commercial consumer, this creates an incentive to 

explore alternative energy options such as wind, solar, and hydro power independently to reduce 

or even eliminate dependence on the electrical grid for power.  

Unfortunately, hydro power is not a good option, or even possible, for a commercial 

building independently producing energy unless there is a small river nearby. In that case a 

waterwheel could provide some power to the 

building if there is strong enough water flow 

(see figure 1). Hydro power could also be 

utilized in gravity-based rainwater runoff 

applications, which could be used where there 

is no access to a creek or river. 

Figure 1: A waterwheel that could be installed in a 

small river or creek (Hydroelectric Power, (n.d.)).  

Solar panels are easily mounted on roofs or the sides of buildings; therefore, they are an 

easy way to generate power for buildings. The disadvantages of mounting panels on roofs are the 

initial cost and that they will never produce electricity during the night; so enough power must be 

generated and placed into batteries during the day to last 

through the night. The other major problem is exposure to the 

sun, which varies throughout the day and is obstructed by 

Figure 2: Solar panels on a roof (rooftopsolar2, 2010) 

http://www.electrovent.com/
http://www.electrovent.com/
http://www.electrovent.com/
http://www.electrovent.com/
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other buildings in large cities, as well as varying at different latitudes and times of year (Facts–

about-solar-energy.com, 2006). 

The final major option is to mount wind turbines on the top or side of buildings. This is 

difficult to effectively accomplish because wind patterns are very turbulent around buildings. 

Additionally, most traditional horizontal-axis-style wind turbines vibrate when operating which 

can be a threat to the structure of the building, the turbine itself, and the people inside the 

buildings. Wind turbines can work on buildings if they are constructed with a vertical axis 

design. 

A horizontal axis wind turbine (HAWT) 

has a vertical tower with a horizontal axis. 

The blades are straight and attached to the 

end of the axle. On a HAWT, wind hits the blades, 

usually turned at an angle, and pushes them out of the 

way. Because the blades are angled, this causes the wind 

to rotate the hub. The blades can be either flat or almost flat on one side and more significantly 

curved on the other side, similar to an airplane wing. The number of blades is different 

depending on the intended usage of the turbine; but if it is for electrical generation, the three-

bladed design is most common.  

A vertical axis wind turbine (VAWT) has a vertical axle which also acts as the tower. 

There are many different types of VAWTs, but they all have the gears, generator, and electronics 

at the base of the tower which eliminates the need to have wires going to the top. The major 

advantage is that the wind can come from any direction and the turbine doesn‘t need to be 

pointed into it.   

Fig. 3: General 

differences between 

horizontal axis 

wind turbines 

(HAWTs) and 

vertical axis wind 

turbines (VAWTs) 
with parts labeled.  

(Image by Author) 
 



Modeling the Twisted Savonius Wind Turbine Geometrically and Simplifying Its Construction Nick Halsey 

Page 5 of 38 
 

 

HAWTs are very different than their VAWT counterparts. On HAWTs, the number, size, 

shape, material, and pitch of the blades can vary, along with many other similar parts within the 

tower and nacelle (see figure 3); but they commonly have three spinning blades on a horizontal 

axis perpendicular to a tower. In contrast, VAWTs come in two very different types of design: 

Savonius and Darrieus (Vertical Axis Wind Turbine, 2009). Figure 4 shows these different wind 

turbine designs. 

The two designs are complete opposites in fundamental blade operation principle, but 

identical in basic operation and mechanics. The basic Savonius design is drag based—the wind 

essentially pushes on the blades. The Darrieus design, on the other hand is lift based—the wind 

essentially pulls the blades because of pressure differentials. Additionally, both of these designs 

can be twisted about the axle, giving many advantages to the turbine‘s operation but being much 

more complicated to construct.  

Most Darrieus VAWTs have thin blades shaped like eggbeaters, but others use straight 

blades oriented vertically away from the axle. Darrieus blades are shaped like airplane wings 

Fig 4: The three basic types of 

wind turbine (image by author) 



Modeling the Twisted Savonius Wind Turbine Geometrically and Simplifying Its Construction Nick Halsey 

Page 6 of 38 
 

(see fig. 5); a lifting force is found on the leeward side of the blade when the wind hits it, causing 

it to turn. Some Darrieus turbines require their generator/alternator to act as a motor for the 

turbine to start operating, while the wind continues this initial motion to generate power.  

Another disadvantage of the Darrieus design is that the torque created when the wind hits each 

blade causes pulsations that reduce the life of the turbine and create inefficiencies in operation. 

Some designs use helical twists, distributing these 

pulsations over the 360 degrees (ex. 3 blades (offset) 

twisted 60
o
) of a single rotation (Darrieus wind 

turbine, 2009 [including fig. 5]). 

Savonius turbines are drag-based and 

generally not as efficient as Darrieus turbines. 

Savonius designs operate similarly to cup anemometers
1
 which are also drag-based. Less drag 

occurs when the wind is pushing against the scoops than when the scoops are moving with it; 

this differential causes the torque and rotation on the shaft. Despite only having one relatively 

simple design, the shape, the size and number of the blades, the distance 

―e‖ (on fig. 6b) can vary on 

Savonius turbines, and multiple 

turbines can also be stacked on 

top of one another (see figure 6a) 

(Savonius wind turbine, 2009).  

                                                            
1 A cup anemometer is a device that measures wind speed using several cups that are blown by the wind, spinning 
around a pole/axle that is vertical. 

Fig. 6a&b: Left: A Stacked Savonius 

turbine, with three blades per sub-turbine. 

Right: Diagram of wind patterns within a 

two bladed Savonius turbine. 

 (Savonius wind turbine, 2009)  

Fig. 5: Basic operation 

principles of the 

Darrieus design 

http://en.wikipedia.org/wiki/File:Darrieus.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1a/Savonius-rotor_en.svg
http://en.wikipedia.org/wiki/File:Darrieus.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1a/Savonius-rotor_en.svg
http://en.wikipedia.org/wiki/File:Darrieus.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1a/Savonius-rotor_en.svg
http://en.wikipedia.org/wiki/File:Darrieus.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1a/Savonius-rotor_en.svg
http://en.wikipedia.org/wiki/File:Darrieus.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1a/Savonius-rotor_en.svg
http://en.wikipedia.org/wiki/File:Darrieus.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1a/Savonius-rotor_en.svg
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Despite being relatively inexpensive and requiring little maintenance, Savonius turbines aren‘t 

often used because they are inefficient. They will also only spin as fast as the wind is blowing because 

they are drag based; thus, their tip speed ratio is less than or equal to 1. Savonius turbines, therefore, have 

slow rotations per minute (RPM) ratios and high torque creating the need to be geared up2 when used for 

power generation. This requires more RPM to provide more wattage (unit of measurement of electrical 

power output). Fortunately, Savonius turbines capitalize on turbulent winds like those found near 

buildings, creating higher efficiency on buildings. Because of these factors, Savonius designs are rarely 

used industrially but are often successful when independently constructed to provide power to buildings 

(Savonius wind turbines—Wind, 2008).  

All of these VAWT designs are better suited than HAWTs for rooftop mounting for several 

reasons. First, they don‘t require a tower (apart from the tower that also serves as the axle). Additionally, 

because a tower is needed for a HAWT regardless of placement, it might as well be placed next to the 

building on a taller tower. HAWTs also must be kept pointing either into or with the wind to operate, 

unlike VAWTs, and VAWTs don‘t experience the damaging vibrations that HAWTs do. 

Vibrations caused by wind turbines have harmful effects on both the turbines themselves 

(including any structure they‘re mounted on) and the people living or working near the turbines. Although 

this statement is true for all wind turbines, it mostly refers to HAWTs. It is common knowledge within 

the renewable energy community that large wind farms, sites with hundreds of turbines up to 400 ft. tall, 

create challenges for property owners. In addition to the ―eyesores‖ and resultant declining property 

values are the concerns of noise and health issues. Both the noise and the health problems are caused by 

vibrations created because of turbulence that occurs as the HAWT‘s blades spin and pass the tower. The 

turbulence of the wind is caused by the blades spinning in the opposite direction of the wind (moving 

perpendicularly to it), and further variation in airflow causes additional vibration each time the blades 

pass the tower. The vibrations occur at a low enough frequency that they are inaudible to humans, but the 

                                                            
2 To gear up the rotation of an axle, a large gear is placed on the first axle and a small gear is placed on the second 
axle; the cogs lining up cause the second axle to spin much faster. 
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vibrations are often amplified when multiple turbines are near each other and are spinning at the same 

frequency, which is often the situation with wind farms. The low frequency vibrations can also cause 

certain parts of buildings, such as windows, to vibrate. These can cause noticeable noise and potentially 

damaging vibrations to buildings and people (Van Den Berg, 2004). 

Turbine tower height is also a potential issue when turbines aren‘t mounted on buildings. The 

American Wind Energy Association (AWEA) continues to attempt to justify placing turbines on the 

tallest posts possible. Some of their reasoning is logical, such as that faster winds are found at higher 

elevations. Others, such as a seemingly vital need to avoid turbulence, are not necessary. This opinion is 

quite clear in the following passage from an AWEA guide designed for permit lawmaking reference by 

state and local governments: 

Why Do They Need To Be Tall? 
A tall tower is the single most important factor in the 

economic viability of a small wind system. Tall towers 

enable turbines to access faster and better quality 

winds, and even small increases in wind speed 

translate to exponentially more energy the turbine 

can generate. In other words, a taller tower means 

far more - and cheaper - energy. (AWEA, 8) 

 

 Additionally, the AWEA generally disapproves of turbines mounted directly on 

rooftops, insisting that a tower should be utilized on top of the roof to bring the turbine 

above all of the turbulence of an urban environment. The issue is, why not save on cost and 

potential dangers of a post (proposed by the AWEA to be 80‘+ long) by designing a turbine 

to capture those turbulent winds? This excerpt shows the AWEA‘s favor for tall towers: 

                Rooftop Turbines and Urban Environments: 
Site-ing [turbine placement] becomes especially 

important for turbines in [rooftop] settings. Wind 

patterns behave very differently around buildings and 

in densely-built areas, so a turbine must be sited very 

precisely in order to gain access to wind of sufficient 

quality. Height, for example, becomes increasingly 

important in order for the turbine to rise above 

aerodynamic obstacles and turbulence... (AWEA, 16) 

 

But what if an 80 foot tower isn't an option? Can a turbine be effective on a rooftop 

or nearer ground? Most importantly can wind turbines be incorporated into existing 

structures? The AWEA passively offers a suggestion through display of the picture, right, in the margin of 
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the brochure (with no caption or mention). If turbines are built into existing towers, like lampposts or 

telephone poles, then using a tower may be worthwhile. Otherwise, it makes more sense to utilize 

turbulence-tolerant designs on rooftops, which actually create their own windflow patterns that can 

channel the wind into the turbine if placed correctly. 

Important to remember when considering all of this criticism is that it is not only about HAWTs, 

which I have already determined unfit for rooftops, but also with large wind farms which magnify the 

vibrations greatly by combining large turbines and large numbers of turbines. One source explains that the 

vibrations of a small HAWT can be channeled into the ground through the tower of the turbine. It also 

warns that if mounted on the side of a house the vibrations will be channeled into the house and that, even 

with rubber mounts, only 2/3 of the vibrations will be stopped (Wind turbines noise and vibration, 2009). 

If turbine vibrations go through the house or building, they can have even worse effects than those of 

wind farms. Therefore, a HAWT placed on a building must have a method of dampening the vibrations it 

causes so they are not transferred to the building. When a VAWT design is used this issue should be less 

pronounced because VAWTs don‘t carry the same vibration problems as HAWTs (although certain 

designs have pulsations as mentioned previously). 

 Wind flow patterns around buildings are studied for many 

reasons including snow drifts, dispersion of pollutants, pedestrian 

discomfort at the ground level, and, of course, wind turbine placement. 

This diagram shows the flow of wind around a building as determined 

through studying pedestrian discomfort around buildings in windy areas. 

There are several places where circular eddy currents form. The wind 

just goes around the building, generally; but in these places the wind is 

very turbulent and, therefore, hard to capture. The ideal placement for a wind turbine on a roof would be 

at the front edge, closest to the direction from which the wind is coming; however, the wind usually 

doesn‘t come from a single direction. The center of a roof would be ideal for any wind direction; 

however, the turbine would need to be high enough to avoid the eddy current that forms in the center of 

Fig. 7: Wind flow patterns around a 

building (studied to examine pedestrian 

discomfort) (Blocken, (n.d.))  
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buildings with a greater depth than the one in the fig. 73. The worst place is probably on the edge of the 

roof opposite from where the wind came, because the strong wind is higher and the eddy currents are 

gone. Because of all these factors the best turbine placement is high in the center of the roof or near the 

edge where the wind will most often come from. The turbine should still be designed to capture turbulent 

wind, though, because of the general nature of building wind patterns. 

 In qualitative studies conducted on a scale model of a real building, the south end of Oregon 

Episcopal School‘s Middle School, fans were used to simulate a randomized wind flow pattern around the 

building. The wind was designed to be as turbulent as possible to simulate the flow of real winds around a 

building. I found that the wind hitting the flat side of a building created a concentrated channel of wind 

ideal for turbines placed directly on the leading edge of the building. When the wind hit at one of the 

building‘s corners, however, the flow created a ―dead‖ spot where there was almost no airflow at the 

leading corner of the roof, but there was a very strong flow along the edges of the roof further away from 

the corner. Therefore if there is one prominent wind direction in an area, then the wind turbine(s) should 

be placed along the edge of the roof leading into the wind for maximum power potential (Halsey, 2010). 

I have also done quantitative analysis of the best design for VAWTs on rooftops using scale 

model testing. I found that an H-Darrieus VAWT was more effective than a simple Savonius VAWT, but 

both designs were inconsistent in operating in the turbulent winds and couldn‘t always self-start. The 

Twisted Savonius design, on the other hand, was very consistent in operation and also had much higher 

average power output, measured in voltage and resistance, then calculated to power output in watts. 

Therefore, it was concluded that the best type of wind turbine for the turbulent winds found with rooftop 

use is the Twisted Savonius. The problem is that the process of constructing a Twisted Savonius wind 

turbine is currently extremely complex, requiring expensive materials and machinery to build and 

therefore making the cost very high. This is because the shape of the Twisted Savonius design is very 

                                                            
3 The building is more cubic, the top is squarer in shape. 
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complex. In order to simplify the method of this design‘s construction, its shape must be better 

understood (Halsey, 2010).  

 A study by Saha and Rajkumar (2005) investigated different twist angles for a three bladed 

Savonius VAWT through low speed wind tunnel testing. They state that previous testing had investigated 

many of the previously discussed variations of the Savonius design. All of these factors were held 

constant between all of the models, with the only variation being in the angle (alpha) of twist. Even the 

model weight was kept constant, at 126.5g. This was accomplished by holding the top of the blades in the 

same position and radius as the untwisted blades and bringing the bottoms of the blades into a smaller 

radius than at the top. Each model was about 220 mm in height, and was tested with wind sent through a 

wind tunnel to create a stable flow. Forces on the models were observed, including torque and angular 

velocity (rpm), the primary dependent variable. The 

graph at right shows the velocity of each of the 

models tested at various wind speeds. This type of 

graph represents the ―power curve‖ of each of the 

designs, when lines connect the points. It was also 

found that the twisted blades had a much more 

constant torque than the straight ones, which means 

that they will require less maintenance and have a 

longer life-span. General conclusions from the study 

show that there are advantages and disadvantages to 

increased twist angle, but the performance is ultimately improved as the blades 

are twisted more. The Savonius design was previously known to self-start well, 

but adding the twist facilitated this trait and created a smoother operation and a 

generally more efficient design, according to the study. 

Fig 8: RPM versus wind 

speed at different twist 

angles (Saha, 2005) 
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 Another study on the Twisted Savonius design by Hussain, Mehdi, and Reddy (2006), attempted to 

increase the efficiency of Savonius VAWTs to increase the opportunity for their currently limited use, by 

twisting the blades. Unlike the previously described experiment, this one investigated twist angles from 0
o
 to 

60
o
. They used CFD which is a program called computational fluid design, in other words, the turbines were 

modeled and evaluated through a computerized simulation program. Designs were created for twist angles at 

intervals of 5
o
 from 0 through 60 (see below). After configuring the software to place a simulated wind-flow 

on the designs, the simulation was carried out and performance data was collected. One of the many output 

values was efficiency. In the graph below, it is clear 

that increasing the twist increases the efficiency of the 

model, until the twist reaches 450 at which point 

efficiency begins to decline. In conjunction with the 

maximum efficiency at 450 of twist it was found that 

there was also the greatest positive surface area when 

the twist equaled 450. The surface area was calculated 

by the concave area of one blade minus the convex 

area of the other blade, so that the forces would 

produce a net force on the concave blade, spinning the turbine. 

         0 degree twist 

Fig 9 & 10: Twisted Savonius Models and their 

efficiency in terms of twist angle (Hussain, 2006) 
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 From these sources it is clear that increasing the twist angle of a Savonius wind turbine‘s blades 

increases its efficiency, at least to a point, when models are tested numerically in terms of velocity and 

efficiency. Theoretically, the more twisted a turbine is, the more efficient it will be until the angle of twist 

reaches 1800, at which point the blades of the turbine reach all the way around the axle of the turbine. So 

why does the efficiency decline from 450 on? In order to understand this crucial piece of the twisted 

Savonius design—the twist—and then determine a better method of building it, it is necessary to get to 

the root of the blades‘ shape. Scale model testing and computerized airflow modeling have been done to 

explore the different aspects of optimizing the twisted Savonius design, but it is necessary to explore the 

geometry of the blade shape to understand why there is an ideal value of twist. Exploring this value, 

thought to be at 450, could provide crucial information about the geometry of the shape that suggests why 

it works so well fluid-dynamically. It could also explain why more twist reduces efficiency after 450 of 

twist. How should the design be modeled and explored, though? Since the goal is to model the design 

geometrically and be able to easily adjust the parameters of its geometric structure, the use of a symbolic 

geometry program is ideal. 

 Symbolic geometry programs can draw accurate geometric drawings and use numbers, variables 

and/or equations to constrain the drawings. These constraints can involve many variables which can be 

adjusted or even animated through a tool within the program. In addition to creating these extremely 

accurate and mathematically correct drawings, symbolic geometry programs can make calculations of 

lengths, angles, and more within a drawing, both numerically and symbolically in terms of the variables 

used (Oke, 2010 [both sources]). This project utilizes the most prominent symbolic geometry program, 

Geometry Expressions. Although its drawing plane is two-dimensional and the complex turbine shape is 

very three-dimensional, ellipses can be used to represent circles that have been tilted into a three 

dimensional angular view and cross sections of the turbine can be viewed. Therefore, the two-dimensional 

software is still very useful for modeling the twisted Savonius turbine. 
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 The objective of this project is to explore the geometric shape of the twisted Savonius VAWT in 

order to optimize the design and develop a simpler method of constructing it. In investigating the shape, a 

particular focus was on the differences in shape as the angle of twist is varied. I predicted that there is 

something causing a reduction of surface area within the geometry of the blade that causes it to lose 

efficiency at higher levels of twist. This was all done with a geometric model in the program Geometry 

Expressions, allowing observations to be made on both still and animated images. Calculations on 

different pieces of the model were also used to learn more about the shape including an attempt to find the 

equation for the shape‘s surface area in terms of the turbine‘s radius, the twist angle and other parameters 

(which involves advanced calculus to determine). It may also be possible to determine the three-

dimensional parametric equation for the surface of the blade. After the geometry of the blade was studied, 

methods for ―unrolling‖ the blade into a flat shape that could be stretched over a frame to build the 

turbine were studied, again using Geometry Expressions. If successful, this method would drastically 

reduce the cost of the turbines. By reducing cost, widespread use would become much more feasible and 

generation of wind energy at the location of power usage could become a regular practice. 

Methods 

Procedures:  

Software Background: The two software programs used for this research were the symbolic geometry 

program Geometry Expressions and the computer algebra system Maple.  

Geometry Expressions was originally published in 2006 and is used primarily as an educational tool 

for high school and college levels of mathematics classes (Algebra and Geometry through advanced 

Calculus).  Several currently yet-to-be-published versions of the software (2.3.00-2.3.07, 2.3.21) were 

used along with the newest released version, 2.2; however, the only unreleased feature used is an 

animation exporter which is not necessary for making the model, but is for using it. A full list of features 

is in Appendix A. 
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 Maple is a comprehensive computer algebra system made by 

Maplesoft. It was not used as heavily as Geometry Expressions, but 

key features are algebraic and calculus manipulation of mathematical 

expressions and 2 and 3 dimensional plots. The operation is similar 

to that of an advanced graphing calculator (such as the TI-89), but on 

a computer. The version Maple 14 was used. 

Constructing the Models in Geometry Expressions: 

 Both a top view and a side view of the wind turbine were made. The following paragraphs state 

each step in the mathematical process of constructing them (but not specifically how to do it in Geometry 

Expressions). The first, and easiest, part of modeling the twisted Savonius wind turbine is making a 2 

dimensional top view. The twist of the turbine is constrained as theta, the rotation of the turbine is X 

(which allows us to animate the turbine as if it's spinning in the wind), and s and t represent how far up 

and around the blade a certain pair of points are. We can ―fill in‖ the entire blade by constructing traces. 

Traces are essentially the path along which a certain line, curve, locus, etc. moves traced out a given 

number of times through a certain interval. In other words they are the path of a line, locus or curve as a 

parameter (usually a point proportional along a curve) changes. These parameters all stay consistent 

between the different models and the traced surfaces method is also used in the side view model. Note 

that in this project I assume that the Savonius wind turbine's blades have a semicircular cross section 

(horizontally). This is often the case with Savonius turbines but some have cross sections that are more 

elliptical. Here is the entire construction process of the top view:  

First, 4 circles are drawn and their radii are constrained to be ‗r‘. Next, the intersection point of 2 

circles is created and line segments are drawn from the point of intersection to the centers of the circles. 

The intersection point is set to (0,0) and one of the line segments‘ direction is constrained at X. Next, the 

angle between the line segments is set as theta. Then, 2 points are added to each of the 2 circles being 

used right now, which will leave 3 (the first is added when the circle is drawn). Arcs are drawn between 2 

Figure 11: Basic User Interface 

of Geometry Expressions 
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of the points on each circle. On the first circle, the arc endpoints are constrained to be proportional along 

the curve at X and X+pi, the third point is X+t. The same is done on the other circle, but with theta added 

to each constraint and the endpoints oriented so the arc faces the opposite direction. This entire process is 

repeated with the other two circles, and the intersection point from before is 

coincident with the new intersection so that all four circles intersect in the same 

place. The angle between the line segments is still theta, but now the angle 

between one of the new line segments and the corresponding old one is pi 

radians instead of a direction of X. See the screenshot image (figure 12), right. 

Everything but the arcs and the points constrained by t are hidden. Line segments are drawn from 

one of these points to the next one, rotated at theta. Points are placed on each line and constrained to be 

proportional at s. The locus of these new points is taken, from 0 to pi through parameter t. The trace of 

each ellipse is taken through the parameter s, from 0 to 1. This will make the blade shape appear. Next, 

the trace of each of the new line segments is constructed, through t from 0 to pi. Now the blade is 

completely filled in with a grid. Using different colors can 

enhance the model additionally. Using the animation exporter 

feature (unreleased), an animation can be created of the turbine 

spinning as if in operation or an animation of twisting the turbine 

can be created by varying theta. An interesting geometric proof 

from this model is in Appendix B. 

 The side view model is constructed in pseudo-3D by basing the frame on ellipses which act as 

tilted circles in Geometry Expressions. With this model, the traces give the appearance of an actual 

twisted Savonius turbine, and when the X variable—which controls the spin—is animated, a video of the 

wind turbine operating in the wind as it would look from the side is produced. The ability of Geometry 

Expressions to create semi-transparent surfaces out of traces allows both blades to be seen as they are 

spinning which is especially useful for trying to study and understand the shape. 

Figure 13: Completed Top View Model 

Figure 12: Fully constrained top view model. 
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 To build the model in Geometry Expressions, three ellipses are drawn first. The equation of each 

is constrained so that two ellipses are always tangential to each other and the third ellipse and the first two 

ellipses rotate within the third as X is varied. The following equations are used to constrain the ellipses, 

with all of the letters and symbols being used as ellipse parameters except for X which controls the 

general spin. 
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Next, points are created on the smaller ellipses as they were in the top view and with exactly the same 

constraints. When all six points have been drawn and constrained, the entire drawing is copied and pasted. 

The only apparent difference is that the constraints are thicker. Dragging each of the ellipse equations, 

one of each is revised with a minus ht in the y section like this: 

(
   

 
)
 

 (
      

 
)
 

   

When all three ellipses are duplicated below the original ones at a distance of ht, theta is added to every 

constraint right next to the X (except in the outer ellipse equation) as in these equations: 

(
         (     )

 
)

 

 (
          (     )

 
)

 

              

As before, line segments are drawn from the top set‘s t 

points to those on the bottom. Then a point is placed on 

each line segment and constrained to be proportional at s. 

Finally, loci and traces are constructed as before. The 

final figure (14, right) can again be animated, in operation 

or twisting.  

 As will be seen in the results section, geometric 

constraints require that multiple sections of blade are necessary in a turbine for it to be twisted the full 

Figure 14: The basic side view “3-D” model twisted 

(theta) about 120o and rotated (X) about 30o. 
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180o, which necessitates a slightly extended procedure for construction. Four sections identical to that 

already described are twisted 45o or pi radians, and stacked to form this more effective design. The 

properties requiring the stacking process will require it for development of a new method of blade 

construction also, but fortunately this requires little extra work, only creating four separate sections and 

stacking them. To create the visual model of the full, stacked turbine, five sets of rotating (with X) 

ellipses were created instead of two. The variable ht was again used to distance all of the elliptical 

sections, but this time in fractions so the sections would be spaced evenly. All of the proportionally 

constrained points on the small ellipses remain, but are all twisted by a fraction of theta (along with the 

small ellipse equations) so that each layer moves theta/4 radians farther around the turbine as X and theta 

are varied. Though the construction process is very long and tedious, the side view 

model can be fully built in about 45 minutes even with all 5 elliptical sections using 

a method with refined keystrokes. Discovery of this method was also very difficult 

because of the difficulty in constraining the figure in a tilted, elliptical view. The 

result, figure 15, right, is worth the effort because it allows one to conceptualize the 

turbine‘s shape, especially when it is animated; an easy possibility on a fast 

computer thanks to the time consuming use of the variables X and theta. 

In addition to building and observing a computerized model of the twisted 

Savonius wind turbine, I also developed a method which allows one to create the turbine from a flat piece 

of material without specialized equipment. As is the case with a sphere, the shape of the twisted Savonius 

blade cannot be unrolled into a flat shape (like a cylinder can be) because of the relations in its three-

dimensional cross sectional planes. Instead, I used triangles based on control points and line segments 

taken from the top view model, then incorporated the vertical dimension, a, with the Pythagorean 

Theorem to create a flat surface with inner fold lines that can be erected into the blade shape by folding in 

opposite directions. I will briefly explain the process of doing this using 4 sections to approximate, but 

this method was expanded to include approximations of 6, 8, 10, 12, 14, 16, 18, 20, 24, 28 and 32 sides. 

Figure 15: The full side view model 
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While the full side view model can be constructed in 45 minutes, the higher approximations can take 

upwards of 3-4 hours to complete, each.  

Figure 16, left, shows the most basic frame for the top view of the turbine, with 

all of the constraints. The circles represent the top and bottom cross-sections of the 

model and the variables theta and ‗r‘ are used for the angle of twist and the radius of the 

circle, respectively; no other variables from the other models were used. Points were 

constrained around the first half of each circle at even intervals; for the 4 side 

approximation this was at 0, pi/4, pi/2 and 3*pi/4. The second (left) circle was constrained identically but 

with theta added to all of the points. A point was automatically placed at pi for both of the circles because 

the angle between the circles was theta and the direction of the lower circle radius from which the angle 

between the circles was theta was constrained to be 0. Next line segments were drawn between the 

corresponding points (1 on circle 1 to 1 on circle 2, etc.) and on points going 

between (2 on the first circle to 1 on the second, etc.). These ―diagonal‖ lines 

between differently constrained points were colored differently in all of the 

models to reduce confusion (see figure17, right).  

Once the circles were completed, the symbolic lengths of every line 

segment were calculated. Each of these equations represented the adjacent side of a right triangle, which 

appeared as a line in the top view. The variable ‗a‘ was used to represent the vertical, adjacent side which 

appeared as a point in the top view. The remaining side of the triangle, the hypotenuse, needed to be 

found, and then used to constrain line segments in the unrolled shape. Fortunately, the Pythagorean 

Theorem allows this to be done: the theorem states that in a right triangle with 

the adjacent and opposite sides being a and b and the hypotenuse being c: 

          , so c = √(a2 + b2).  

Figure 16: Basic top view 

framework for building 

triangle approximations 

Figure 17: Full frame for line 

calculations in the top view 

Figure 18: Pythagorean Theorem 

applied to first line segment 
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 Now, because the calculations represent the b side, the calculations must be squared, a2 must be 

added and then the square root of the total must be taken to find the constraint, representing the c side. If 

this process is completed incorrectly for any line segment, the rules of triangle side length constraints will 

not be fulfilled and the unrolled figure will be reduced to a single line—the one that was improperly 

constrained. Therefore, it is best to slowly work through the figure and make one calculation, incorporate 

the variable a and use the resulting expression to constrain the unrolled line segment before moving to the 

next line segment. One side of each unrolled triangle doesn‘t need to have a incorporated into it: the 4 

sides that sit at the top and bottom of each blade. These constraints are copied directly from the 

calculation of the symbolic distance between any two consecutive points on the same circle.  

 All of the expressions are laid out systematically as constraints on the actual unrolled shape. 

Figure 19 shows the progression of the unrolled figure as more and more of the triangles are added with 

color coding showing their relations to the circles.  The first ―vertical‖ side of the first triangle, left to 

right, uses the first black line‘s equation on the circles: from point 1 to point 1. The short bottom side uses 

the unchanged distance between two consecutive points on the same circle. The last side of the triangle 

(also the first side of the next) is the first colored line, from point 2 to point 1. I find it useful to make 

these line segments colored on the unrolled model as well, because they are folded in the opposite 

Figure 19: The Unrolling 

Process, in progress for 

the 4 side approximation 
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direction of the black lines. The constraint process continues until all of the lines on the circles have been 

used, and the last vertical side, representing a point on the top view, is simply a, because the adjacent side 

is equal to 0. After all of the constraints, point labels, etc. are hidden, the unrolled figure is reflected about 

the last side, constrained as a, which is also constrained to be oriented vertically. Constraints in the figure 

can again be animated, but the only logical one for this figure is theta, the twist. Appropriate ranges for all 

the variables should be input, I used 0 to pi for theta and locked a as 1.83/4 and r as 1/4, the aspect ratio 

used by previous researchers (Saha, 2005). At times the aspect ratio was rounded to 2:1 for simplicity 

purposes. Creating a polygon with all of the outermost side lengths allows for a real calculation of the 

shape‘s area. Unfortunately a symbolic output, which would be extremely useful for analyzing shape 

changes in terms of height, radius and theta changes, does not seem to exist in a 

finite form, because Geometry Expressions cannot complete the calculation after 5 

minutes (it usually takes milliseconds) and the partial equation it gives is 

immensely long. The completed 4 sided approximation is right in figure 20 and 

the others are found in the results and appendix D. 

Observations: 

 In looking at the figures and animations produced, observations were made about how the 

turbine‘s shape functions geometrically. This included mathematical and qualitative investigations of 

surface area and surface distribution through the blades. Several calculations were made on the figures 

and then manipulated in Maple to produce more graphs and actual three-dimensional images as well as to 

make algebraic and calculus calculations. Two-dimensional graphs were created in Geometry Expressions 

after manipulation in Maple as well.  

Data Analysis: No strictly quantitative data were collected, so there was no data analysis in the formal 

sense. The formulas output from Geometry Expressions were often manipulated in Geometry Expressions 

and Maple as described in the procedures, which could be considered data analysis. In particular, the two-

Figure 20: Completed 

4 sided approximation. 
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dimensional graph that modeled ―the squeeze‖ as the turbine was twisted was used to decide that using 5 

cross pieces with a 45 degree rotation between each would be the most effective way of constructing the 

turbine in a more simple manner. Graphs were created to analyze how close the approximations were to 

the limit of the surface area for n=infinity triangles (and regressions were calculated on them), utilizing 

the basic calculus principles of limits and derivatives. In theory, the calculus of integrals can be used to 

find the exact surface area of the actual blade—not just the triangle approximation—however, this 

process requires extremely advanced calculus principles. Therefore, the data points for each triangle 

approximation were manually analyzed and interpreted, much like traditional data collection, so 

quantitative data analysis was conducted for the surface area investigation. 

Results 
The Squeeze: 

As previously mentioned, the Savonius wind turbine's blade is essentially squeezed as it is twisted 

without any supports between the twist points, which was discovered when the first animation of twisting 

the turbine was viewed. To model the squeeze, it was first looked at from the simplest view: the top. The 

angle between the circles in the top view was constrained as theta and there are proportional points at t 

and theta+t on the circles with a line segment between them. By moving the value of s, a proportional 

point on the line segment, the green locus moves up and down through all of the turbine's horizontal cross 

sections (fig 21b, below). We can see in fig. 21a, below, that the locus of that point (in green) in terms of t 

is always a circle but gets larger and smaller:  

 

 

 

 

Fig 21 a & b: Traces of the 

loci (green) show the cross-

sectional radius’ squeeze in 

the top and side views 
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One question that comes out of this squeeze is at what point is the squeeze the most 

extreme (or where is it most squeezed) in terms of s? This happens when the distance between 

the two intersection points of the circle is equal to the diameter of the locus. This is because the 

locus always goes through two points, the intersections of the circles. How do we know where 

this is, in terms of s, though? The point s being in the same place as one circle intersection 

doesn't mean the locus is at its minimum size. It is best to eyeball where s is when the circle is at 

its minimum size and then replace s with that estimate. It is confirmed by calculating the locus' 

symbolic equation, drawing a circle and constraining it to have the same equation as the locus, 

then calculating the circle's radius and the distance between the circle intersections. When the 

radius is half the distance, the correct value for s has been found. Fortunately, the minimum 

radius is found at 0.5s, or halfway between the top and the bottom. This means that the squeeze 

is symmetrical. Now the question is what effect does theta (the twist) have on the amount of 

squeeze? Figure 22, below, illustrates how the radius, constrained at the maximum squeeze value 

of 0.5 affects the amount of squeeze. Remember, the smaller the 

locus, the more the squeeze. 

The squeeze can also be modeled in a computer algebra 

system (CAS), such as Maple. To do this, the Geometry 

Expressions calculation for the symbolic radius of the locus of 

the point constrained at s is copied and pasted into Maple. Then, 

the constant r is set at 1 and theta is replaced with pi. Plotting the result gives the amount of 

squeeze moving up/down the turbine when it is twisted pi radians (note that Maple works almost 

exclusively in radians). Going back to the theta equation, a three-dimensional plot of the squeeze 

can also be created. In this plot, the unmarked axis is the radius of the locus and the other two 

Fig 22: the trace of the locus (green) shows 

the effect of adjusting theta on the squeeze, 

when it is at its most extreme point (s=.5) 
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dimensions represent theta and s. Finally, there is a two-dimensional plot of how the twist affects 

the radius at the minimum radius and a calculation of the radius at a specific theta value. The 

relevant pieces of the maple worksheet are below in figures 23 a-l, below. 

Fig. 23 a-k: Maple Worksheet 
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This last graph (fig. 23k) is most useful because it 

shows how much compromise in squeeze there is for a 

given angle of twist on the turbine. Avoiding this issue is 

the ideal solution, and with the goal being to make the 

turbine as geometrically simple as possible, it was 

determined that stacking four sections of turbine, each 

rotated 45
o
 was the ideal solution for these conditions. This 

way there is a minimal amount of squeeze (45
o
=pi/4 radians, ~.7 radians for graphical reference), 

but also a minimal number of sections to separately construct and stack. 

The Surface Area Limit: 

 As expected, each approximation model had an area that was slightly bigger than the 

previous, and the difference between each area grew smaller and smaller as the number of sides, 

n, got bigger. The slope of the line segment connecting the twenty-eight and thirty-two side 

approximations was only .001349, with the rise being about .0054 and the run being the change 

in n, 4. Calculating all of the other line segments on the graph, using Geometry Expressions as 

the grapher by constraining points and showing the axes, they generally got smaller and smaller, 

confirming the visual evidence of the actual graph numerically. The main concepts of calculus, 

limits, derivatives and integrals are very relevant to this piece. The goal is to find the limit of the 

surface area as n approaches infinity, which represents a definite integral on an unknown (and 

possibly non-existent) function. The derivative is used to find the rate of change (slope) between 

each approximation‘s data points. Figure 24, below, is the graph in Geometry Expressions with 

the data points and the slopes between each approximation.  
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In order to show this limit all four ways: geometrically (building models), numerically 

(areas and rates of change between areas), graphically (with the graph of the area compared to n) 

and algebraically; it is useful to try to find an approximate equation to represent this limit to give 

an algebraic representation. Because of the almost logarithmic shape of a finite limit-

approaching graph, a logarithmic regression was found to best approximate the graph. The 

y = 0.1697ln(x) + 11.548 
R² = 0.8471 
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Fig 25: logarithmic regression of surface areas 

approaching the limit. Note the limitations of 

the model, resultant of the lack of a horizontal 

asymptote being approached by a log function. 

Figure 24: Geometry Expressions graph of 

surface area values for each approximation by 

number of sides at a constant twist angle with 

calculated slopes between each approximation. 
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problem with using a logarithmic regression here is that it doesn‘t approach a limit; this leads to 

it being unsuccessful in approximating the curve at the upper extreme of n, making it of little 

use. The regression was calculated in Microsoft Excel, and then confirmed with a TI-89 

calculator. 

 All of these representations of the limit show that the 32 side approximation is essentially 

close enough to the actual area to be credible to about the hundredths place. This entire process 

need not be repeated for every twist angle and height to radius ratio; because of the proven 

accuracy of the 32 side approximation, it can be used to find the surface area for whatever 

parameters are set forth.  

Discussion/Conclusion: 

Discovering and modeling the squeeze in the Twisted Savonius VAWT as it twists has led to 

the important knowledge of exactly how to build the turbine in terms of geometric parameters. 

The newfound understanding of the geometric constraints of this complex shape can be 

combined with the known and yet-to-be-known constraints of the materials used to build it to 

create an improved turbine that is both cheaper to produce and more efficient in operation. 

Restraints in twisting that extended beyond materials previously are now explained by this 

theory of geometric squeezing of the shape. The squeeze‘s modeling has also simplified the 

construction method, by limiting the sections of true Savonius shape to four, instead of 

approaching the limit of infinity. Previously, many turbines were carefully molded into the 

―true‖ twisted Savonius shape where every horizontal cross section had the same radius. This is 

no longer necessary as the squeeze has been shown to be minimal, with maximum twist and 

construction efficiency, when the turbine is twisted pi/4 radians, or 45
o
 between each of the five 

true cross sections, which can act as supports.  
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One piece that could be overlooked is the visuals that were created using the pseudo-three-

dimensional model animations. These allow for visualization of the turbines in operation and can 

be layered in Geometry Expressions to show what the turbines would look like on a building 

from virtually any angle (street or air) in any colors, even semi-transparent; but most importantly 

in operation. Figure 26 shows a still version of this, with the building being the Oregon 

Episcopal School (OES) dining hall. Knowing the surface area of the blade also allows cost 

estimates to be made much more accurately. The most important surface area figure is that when 

there is an overall a:d (height to diameter) ratio of 2:1 (individually 

.5:1) and the twist is pi/4 radians for each section of each side, 

which is ~.82 units squared. Therefore, the total surface area for the 

fully twisted model at the simplest logical a:d ratio is ~3.28 units 

squared, a useful figure to know for efficiency and material costs 

purposes. 

There are several limiting factors, however. The first issue is that the visual models are 

technically two-dimensional and depict a three dimensional shape. The use of ellipses and semi-

transparent blades makes this less noticeable, but when viewing the animation of the turbine ―in 

operation‖ the turbine can appear to be spinning either clockwise or counter-clockwise, 

depending on how you look at it, even though it is mathematically spinning clockwise. The 

triangle approximations are also approximations of the actual shape and many more triangles 

may be needed to better this approximation. One positive is that the angle of 45
o
 was found by a 

previous study (Mehdi, 2006), to be the most efficient, which is now also demonstrated 

geometrically. Saha (2005) stated that more twist is better, which is also true in principle, and the 

stacking method allows higher twist angles to be used. 

Figure 26: Turbine on OES Dining Hall 
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All of the data collected does allow cost estimates to be made, though exact figures vary 

widely based on materials. A 2 meter tall blade (for a 3 meter turbine) could be built from the 

triangle approximations for under $50 with the axle/mount, but without gears, generator, and 

electronics. I predict that a scaled up version of the 32 side approximation 

could be cut out of semi-flexible fabric and stretched over the frame, then 

coated with something to fill any small holes, all to create a very simple, 

cheap and effective blade. This compares to current costs that can range up 

to $15,000-$25,000 for the Aerotecture ―Aeroturbine‖, figure 27, which is a 

similar design (Aerotecture, 2010 [and fig. 27]). There are still many 

limitations to the triangle approximation models. The biggest is that because 

they are approximating a complex shape, more triangles could always be used to make the 

models. Additionally, a refined method for utilizing the triangle approximation models, without 

making all of the folds along each triangle, needs to be developed before the model is fully ready 

for use. Overall, however, the cheaper cost and simpler construction open the door for 

widespread use of the Twisted Savonius design methods in rooftop settings. With this simpler 

design and construction method, they could feasibly and inexpensively be placed on all suitable 

buildings (see Appendix E) to generate large amounts of power. 
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Appendices 

Appendix A: List of Geometry Expressions Features. 

Geometry Expressions was originally published in 2006 and is used primarily as an 

educational tool at high school and college levels of mathematics classes (Algebra and Geometry 

through advanced Calculus). The program has the following list of features (as of latest released 

version 2.2): 

 Drawing Shapes: You can draw and constrain the following objects by using icons in the 

Draw tool panel: 

o Points 

o Line Segments 

o Infinite Lines 

o Vectors 

o Polygons 

o Circles 

o Conics:  

 Ellipse 

 Parabola 

 Hyperbola 

o Arcs (on circles and conics) 

o "N-gons" (Regular polygons of N sides) 

o Curve Approximations 

o Functions 

o The Draw tool panel also inserts text, pictures and expressions. 

 

 Constraints: You can make the following constrains by using icons in the Constrain 

(Input) tool panel: 

o Length/Distance 

o Radius 

o Perpendicular 

o Angle 

http://www.viewsofscotland.org/library/docs/LF_turbine_sound_Van_Den_Berg_Sep04.pdf
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o Direction 

o Slope 

o Coordinates 

o Coefficients 

o Tangent 

o Incident 

o Congruent 

o Parallel 

o Implicit Equation 

o Point Proportional along curve 

o You can only make these constraints on the appropriate objects. For example, you 

can't constrain a line segment's radius. The software automatically displays only 

the logical options for the item(s) selected to simplify the process for the user. 

 

 Constructions: You can construct a variety of objects in Geometry Expressions. 

Constructions differ from constraints because they create more objects while constraints 

change the positioning of existing objects. The following constructions are available from 

the Construct tool panel: 

o Midpoint 

o Intersection 

o Perpendicular 

o Perpendicular Bisector 

o Angle Bisector 

o Parallel 

o Perpendicular 

o Tangent 

o Polygon (this is especially useful because it can include arcs) 

o Transformations:  

 Reflection 

 Translation 

 Rotation 

o Dilation (scaling) 

o Locus 

o Trace (of locus, curve, etc. along a proportional point) 

o As with constraints, you can only make these constructions on the appropriate 

objects. For example, you can't construct a tangent to a line segment. Again, the 

software automatically displays only the logical options for the item(s) selected to 

simplify the process for the user. 

 

 Calculations: You can make many of the same calculations as the constraints, with the 

addition of things like area and perimeter. Calculations can be made in both symbolic and 

real notation so when you use variables you calculation can be in terms of those variables 

or a decimal of the numbers represented by the variables. When not using variables, 

symbolic calculations give an exact output and real calculations give an approximate 

output. Here is a complete list of the available calculations: 

o Length/Distance 
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o Radius 

o Angle 

o Direction 

o Slope 

o Coordinates 

o Coefficients 

o Area 

o Perimeter 

o Parametric Equation 

o Implicit Equation 

o Like with the other features, calculations these can be made only on the logical 

objects, so the area of a line cannot be calculated. 

 Variables: 

o When constraints are made symbolically, Geometry Expressions can drag or even 

animate variables that are incorporated in the constraints. Functions can also be 

input symbolically in constraints, and then changed from the variables tool panel. 

 Other: 

o There is also an annotation feature and a Symbols tool panel which inserts Greek 

letters, exponents, fractions and other common functions (which can also be 

written out manually). 

 Formatting: 

o Control of color, style, thickness and transparency of all objects 

drawn/constructed 

o Option to show with or without axis, with or without a grid 

o Ability to show/hide all drawn objects and toggle between shown and hidden 

 

Appendix B: A Geometric Proof discovered through investigation of the top view model (see also 

project website: http://www.saltireserver.com/gx/vawt/content/4.%20A%20Geometric%20Proof.html for 

a more interactive version): 

Proof that angle HEG in figure 1 has the measure of theta 
Figure 1—the base figure: 

Here we have two 

circles whose center 

points are A and C and 

whose intersection 

points are E and F. 

Points G and H are on 

circles C and A 

respectively. We have 

constrained line HG to 

go through point F and 

angles AEC and CEG 

are constrained as theta 

and beta. Our objective 

http://www.saltireserver.com/gx/vawt/content/4.%20A%20Geometric%20Proof.html
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is to prove that angle HEG is always theta also when the above conditions are met. 

 
Geometry Expressions Proof: 
Draw the figure with all of the above constraints. Calculate angle HEG. If the output is theta, 

then (assuming Geometry Expressions is correct) we have proven that the angle is theta. 
 

{See video 1—proving with Geometry Expressions online} 

 

Formal/traditional Proof: 
To prove that angle HEG is theta, we need to first prove that angle AEH is beta. To do this, we 

can first show that triangles HAE and GCE are isosceles because two of their sides are radii and 

the third is a chord. Therefore, angle CGE is also beta and angle ECG is 2*pi-beta because of the 

triangle angle sum theorem. Then the chord angle theorem tells us the value of angle EFG. {see 

video 2—the chord angle theorem} In this case, we can now show that angle EFG is pi/2-beta. 

We can also see that angle EFH is pi/2+beta. See figures 2 and 3. 

 

Figure 2—chord angle theorem:    Figure 3—circle C angles: 

Now, we have an angle in circle A, so we are very close to proving that angle AEH is beta. We 

need to use another theorem, the cyclic quadrilateral theorem, figure 4 {see video 3—the cyclic 

quadrilateral theorem}. Figure 5 shows its relation to this context. Then we combine this with the 

chord angle theorem from before to find angle HAE. Because the triangle is isosceles, we have 

proven that angle AEH is beta (figure 6). Now we can take either of the two following paths. 

 

Path 1: 

We know through the addition of angles AEC and CEG that angle AEG is equal to beta+theta 

and that angle AEH is beta, so angle HEG must be theta to satisfy that angle AEG is beta+theta 

(figure 7). 
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Path 2: 

Angles AHE and CGE are also beta (because of the isosceles triangles) so triangles HAE and 

GCE are similar through AA. We can see that their relation is through a rotation about point E as 

well as a size reduction. Since the corresponding sides AE and CE have an angle given as theta 

between them, the other corresponding sides HE and GE also have an angle of theta between 

them; so angle HEG is equal to theta (figure 7). 

 

Figure 4—the cyclic quadrilateral theorem:  Figure 5—our cyclic quadrilateral: 

 

Figure 6—circle A angles:    Figure 7—final figure: 
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Appendix C: Bibliographic notes: 

This project can also be found online at www.saltireserver.com/gx/vawt/index.html. This page is 

hosted by Saltire Software, the maker of Geometry Expressions and is among other student 

projects centered around Geometry Expressions. All of these, including this one are found at 

http://www.geometryexpressions.com/explore.php?p=03-Student_Projects. Figures from this 

project can also be found in various locations on Wikipedia, including the Geometry Expressions 

Wikipedia page, and most notably on the general Wind Turbine page (in several languages) 

which hosts an animated version of figure 4 from this paper. 

Appendix D: All of the unrolled triangle approximation models with twists of pi/4 radians and 

an overall a:d ratio of 1.83:1, as used by prior researchers, and an individual a:r radius of .46:.25: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.saltireserver.com/gx/vawt/index.html
http://www.geometryexpressions.com/explore.php?p=03-Student_Projects
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Appendix E: An OES campus satellite image map (Google Earth Imagery) with potential 

turbine locations indicated in green and blue based on building height, shape and orientation 

considerations. It demonstrates the potential for widespread usage of wind turbines in rooftop 

applications. 

 


